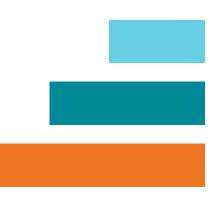


Air Quality Study Brantford Pit Expansion Brant County, ON

Lafarge Canada 6509 Airport Road Mississauga, ON L4V 1S7



Air Quality Study Brantford Pit Expansion Brant County, ON

Lafarge Canada 6509 Airport Road Mississauga, ON L4V 1S7

R.J. Burnside & Associates Limited 17345 Leslie Street, Suite 200 Newmarket ON L3Y 0A4 CANADA

July 2020 300043727.0000

Air Quality Study July 2020

Distribution List

No. of Hard	PDF	Email	Organization Name
Copies			
0	Yes	Yes	Lafarge Canada

Record of Revisions

Revision Date	9	Desc	cription
- July 20)20	Initial Submission to Lafa	rge Canada
R.J. Burnside & Assoc	iates Lin	nited	F
		44	Professional Engine
Report Prepared By:			Limited Engineering License Name: K. ZEROMSKIENE Number: 100525360 Limitations: Outdoor environmental air quality and noise Impact assessment and milipation functional design for residential, traffic and industrial, except oil and gas, large
		i Zeromskiene, Ph.D., LEL oise Scientist	chemical process plants and large storage tank facilities. Association of Professional Engineers of Ontario July 31, 2020
Report Reviewed By:		Ah	W.W. WATSON
	•	20	July 31, 2020

-

Executive Summary

Lafarge Canada Inc. (Lafarge) would like to extend its operation of the existing Brantford Pit onto the adjacent property at 1044 Colborne Street West (formerly known as Highway 53) in Brantford, Ontario.

The Air Quality Study (AQS) is conducted to support the application for a Category 1 Class "A" license (pit below water) under the Aggregate Resources Act and a County of Brant Official Plan and Zoning By-law Amendment under Planning Act to permit this expansion.

The objective of the study is to assess the potential impact on the existing environment due to the Brantford Pit expansion. Multiple operating scenarios were analyzed to determine the worst-case conditions. Predicted ground level concentrations were compared to the applicable criteria and discussed in this study. The results of the dispersion modelling show that predicted particulate and nitrogen oxides off-property concentrations generated from the operation of the proposed Brantford Pit expansion will be below the applicable criteria at all times. Cumulative off-property concentrations were predicted to be below the applicable criteria at all surrounding sensitive receptor locations; therefore, no adverse effect is expected due to the proposed expansion.

The following dust mitigation measures and best management practices are recommended to be implemented at the proposed Brantford Pit expansion site:

- Paved portion of the road at the Site entry/exit should be cleaned periodically to minimize mud tracking onto Colborne Street West and reduce dust generation.
- Reduced speeds should be enforced on-site, and signs posted at the Site entrance.
- Watering of on-site unpaved roads (up to 1.5 L/m2 per hour) when visible dust is observed behind the trucks. Other commercial dust suppressants can be considered, if required.
- Regular washing of extraction, processing and transport equipment.
- Wetting material prior to processing or loading on very dry days.
- Monitor on-site dust through visual site inspections and apply additional water when needed.
- Installing berms around excavation area to reduce windblown dust onto neighboring properties.
- Re-vegetating disturbed areas as soon as possible to minimize dust from these areas.
- During very dry and windy conditions resulting in dust plumes travelling off-site, activities at the Site should be temporarily suspended.

Table of Contents

1.0	Intro	oduction	1
	1.1	Study Area	1
	1.2	Sensitive Receptors	
		Potential Pollutants	
2.0	Exis	sting Ambient Conditions	4
	2.1		
	2.2	Air Quality	5
		Air Quality Assessment Criteria	
3.0	Air (Quality Assessment	7
	3.1	Methodology	7
	3.2	Emission Calculations	12
	3.3	Air Dispersion Modelling	13
4.0	Mod	delling Results	15
5.0		iclusions	

Tables

Sensitive Receptors	3
Brantford MOE Meteorological Station Climate Normals (1981-2010)	4
Ambient Monitoring Stations Summary	5
Background Data Summary	6
Representative Contaminants and Air Quality Criteria	7
Typical Particle Size Distribution Used for Particulate Deposition	14
Monthly Operation Levels	14
Maximum Predicted Concentrations – PM2.5	17
Maximum Predicted Concentrations – PM10	18
: Maximum Predicted Concentrations – TSP	19
: Maximum Predicted Concentrations – NO ₂	20
	Sensitive Receptors Brantford MOE Meteorological Station Climate Normals (1981-2010) Ambient Monitoring Stations Summary Background Data Summary Representative Contaminants and Air Quality Criteria Typical Particle Size Distribution Used for Particulate Deposition Monthly Operation Levels Maximum Predicted Concentrations – PM2.5 Maximum Predicted Concentrations – PM10 : Maximum Predicted Concentrations – TSP : Maximum Predicted Concentrations – NO ₂

Figures

Figure 1:	Site Location	2
Figure 2:	Site Plan and Sensitive Receptors	3
Figure 3:	Wind Rose	5
Figure 4:	Phase 1 Site Layout	9
Figure 5:	Phase 2 Site Layout	10
Figure 6:	Phase 3 Site Layout	10

Appendices

Appendix A	Emission Source Identification
Appendix B	Emission Calculations
Appendix C	Sample Modelling Results
Appendix D	MECP Approval to Use Site-specific Meteorological Data

Air Quality Study July 2020

Disclaimer

Other than by the addressee, copying or distribution of this document, in whole or in part, is not permitted without the express written consent of R.J. Burnside & Associates Limited.

In the preparation of the various instruments of service contained herein, R.J. Burnside & Associates Limited was required to use and rely upon various sources of information (including but not limited to: reports, data, drawings, observations) produced by parties other than R.J. Burnside & Associates Limited. For its part R.J. Burnside & Associates Limited has proceeded based on the belief that the third party/parties in question produced this documentation using accepted industry standards and best practices and that all information was therefore accurate, correct and free of errors at the time of consultation. As such, the comments, recommendations and materials presented in this instrument of service reflect our best judgment in light of the information available at the time of preparation. R.J. Burnside & Associates Limited, its employees, affiliates and subcontractors accept no liability for inaccuracies or errors in the instruments of service provided to the client, arising from deficiencies in the aforementioned third-party materials and documents.

R.J. Burnside & Associates Limited makes no warranties, either express or implied, of merchantability and fitness of the documents and other instruments of service for any purpose other than that specified by the contract.

1.0 Introduction

Lafarge Canada Inc. (Lafarge) would like to extend its operation of the existing Brantford Pit onto the adjacent property at 1044 Colborne Street West (formerly known as Highway 53) in Brantford, Ontario (Site).

The Air Quality Study (AQS) is conducted to support the application for a Category 1 Class "A" license (pit below water) under the Aggregate Resources Act and a County of Brant Official Plan and Zoning By-law Amendment under Planning Act to permit this expansion.

The objective of this study is to assess the potential impact onto the existing environment due to the Brantford Pit expansion. Multiple operating scenarios were analyzed to determine the worst-case conditions. Predicted ground level concentrations were compared to the applicable criteria and discussed in this study.

1.1 Study Area

The proposed Site is located at 1044 Colborne Street West, 7 km west of Brantford in the County of Brant as shown in Figure 1.

The Site is approximately 20 hectares (49.1 acres) and is located on the west side of the existing Lafarge Brantford Pit, ARA license #5515. The Site currently is used as a farmland.

The Site is surrounded by agricultural lands to the south, west, and north. An existing pit is adjacent on the east side. An area zoned for general commercial operation is located on the east side just south of Colborne Street West.

Figure 1: Site Location

1.2 Sensitive Receptors

The air quality effects due to the proposed extraction of aggregates on the surrounding environment were predicted at selected sensitive receptors. Sensitive receptors are described by MECP as:

- A childcare facility.
- A health care facility.
- A senior citizens' residence or long-term care facility.
- An educational facility.
- A dwelling.

Residential dwellings are located northwest, northeast, and east of the Site. Six residential properties were selected as representative sensitive receptors surrounding the Site. All sensitive receptors are summarized in Table 1 and shown in Figure 2.

2

Table 1:	Sensitive	Receptors
----------	-----------	-----------

ID	Address	UTM, m			
טו	Address	Easting	Northing		
R1	1030 Colborne Street West, Brantford	552839	4774685		
R2	1037 Colborne Street West, Brantford	552799	4774756		
R3	1052 Colborne Street West, Brantford	552570	4774624		
R4	1059 Colborne Street West, Brantford	552412	4774653		
R5	35 MacGregor Avenue, Brantford	553346	4774474		
R6	1012 Colborne Street West, Brantford	553211	4774767		

1.3 Potential Pollutants

Aggregate extraction related contaminants are emitted due to on-site vehicle movement, processing equipment and fuel combustion. The most relevant pollutants are generated dust and products of combustion. Typical dust is comprised of the following size particles:

- Total Suspended Particulate Matter (TSP) Particulate Matter (PM) with a diameter of less than 44 microns.
- PM10 particles with diameter of 10 □m or less, mainly generated through vehicle movement, combustion, and windblown dust from open land.

R.J. Burnside & Associates Limited 043727_Lafarge Brantford_Air Quality Study.docx

• PM2.5 – particles with diameter of less than 2.5 \Box m.

The combustion emissions from on-site vehicles and equipment were included as part of this assessment. Nitrogen dioxide (NO_2) and particulate matter (TSP, PM10, and PM2.5) are the main pollutants released from motor vehicles and equipment engines.

2.0 Existing Ambient Conditions

2.1 Climate

The ambient air monitoring station in Brantford was used to assess the climate in the vicinity of the Site. The Site is located within the County of Brant approximately 7 km west of Brantford. The area's climate is cold and temperate. Local climate conditions were obtained from Environment and Climate Change Canada's (ECCC) Brantford MOE meteorological station (Station ID 6140954, Latitude 43°08'00.000" N, Longitude 80°14'00.000" W). According to the Canadian Climate Normals (calendar years 1981 to 2010) for this station, the mean annual temperature is estimated at 8.1°C. The warmest month of the year is July with an average temperature of 21.3°C and the coldest month is January with an average temperature of -6.0°C. The Brantford MOE meteorological station recorded a total average annual precipitation of 867 mm, 770 mm of which was rain. Precipitation is distributed throughout the year, with most of the rain occurring between May and November. The maximum mean monthly rainfall is 95.0 mm and occurs in July. Climate normals for the Brantford MOE station are summarized in Table 2.

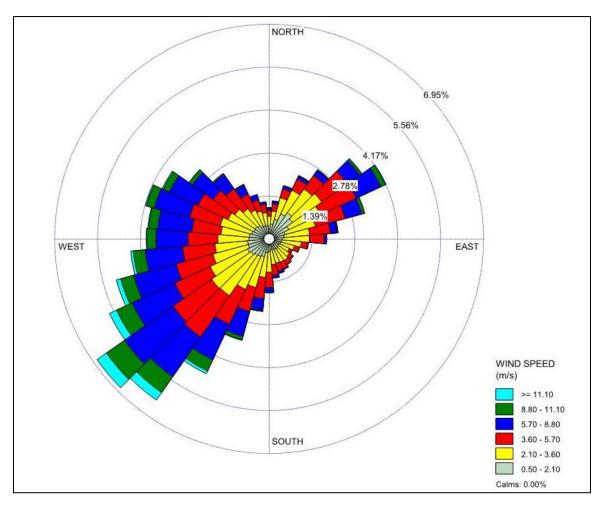

Meteorological Parameter	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Daily Avg. Temp. (°C)	-6	-4.3	0.3	7	13.5	18.7	21.3	20.2	16	9.3	3.8	-2.5	8.1
Daily Max. Temp. (°C)	-1.6	0.3	5.1	12.4	19.3	24.6	27.2	25.8	21.7	14.5	7.9	1.4	13.2
Daily Min. Temp. (°C)	-10.4	-8.9	-4.5	1.5	7.5	12.7	15.4	14.5	10.1	3.9	-0.3	-6.3	3
Rainfall (mm)	27.6	30.4	43.5	65.3	81.1	75.9	95	75	86.6	70.1	78.3	40.8	770
Snowfall (cm)	27.1	21.9	15.6	3.6	0	0	0	0	0	0	6.1	24.2	98.4
Precipitation (mm)	54.7	51.5	59.1	68.9	81.1	75.9	95	75	86.6	70.1	84.4	65.1	867

Table 2: Brantford MOE Meteorological Station Climate Normals (1981-2010)

Air dispersion modelling is based on the most recent meteorological data. The MECP provided the meteorological data set (Station ID 61409) to be used in this study. This data set covers calendar years 2014 to 2018. Based on the provided data, the average wind speed at the station is 4.05 m/s. The dominant wind direction is southwest. A wind rose depicting the relative frequency of wind directions including wind speeds is provided in Figure 3.

Air Quality Study July 2020

Figure 3: Wind Rose

2.2 Air Quality

The MECP and National Air Pollution Surveillance (NAPS) stations in close proximity to the Site were reviewed to ensure the most representative background concentration would be selected. The nearest MECP station in Brantford was selected to fully characterize the background concentrations in the vicinity of the Site. The station information and the five most recent years of data are summarized in Table 3. The location of the selected station is shown in Figure 1. The Site is surrounded by agricultural lands on the south, west, and north sides. An existing pit is adjacent on the east side. An area zoned for general commercial operation is located on the east side just south of Colborne Street West.

Table 3:	Ambient	Monitoring	Stations	Summary
----------	---------	------------	----------	---------

Contaminant	Station ID	Station Location	Year
PM2.5	MECP 21005	324 Grand River Avenue, Brantford	2013-2017
NO ₂	MECP 21005	324 Grand River Avenue, Brantford	2013-2017

A summary of the 90th percentile, maximum and average background concentration values from the monitoring station is provided in Table 4. Averaging periods of background concentrations match the averaging periods of the applicable air quality criteria as summarized in Table 5.

Contaminant	CAS#	Averaging period	90th Percentile * (μg/m³)	Max (µg/m³)	Average (μg/m³)		
NO ₂	11104-93-1	1 hr	20.68	99.64	9.41		
		24 hr	17.47	52.41	9.22		
		Annual	-	10.33	9.22		
PM2.5	-	24 hr	14.08	30.33	8.14		
		Annual	-	9.21	8.14		
PM10	-	24 hr	26.08	56.17	15.07		
TSP	-	24 hr	46.94	101.11	27.13		
		Annual	-	30.69	27.13		
Notes: * 5 annual values are insufficient to calculate an annual 90th percentile value.							

Table 4: Background Data Summary

MECP monitoring stations only record background concentrations of PM2.5. Since PM10 and TSP background concentrations were not available, values were calculated based on monitored PM2.5 concentrations. Mean ratios of PM2.5/PM10=0.54±0.14, and PM2.5/TSP=0.30±0.11 derived by Lall, et al¹ were used to calculate 90th percentile, maximum and average concentrations of PM10 and TSP.

2.3 Air Quality Assessment Criteria

Ontario regulates contaminants released into the environment in order to limit and reduce concentrations of harmful substances in the atmosphere and to protect the environment and human health. As part of this regulation, MECP has developed a number of sources of criteria as described below.

Ambient air criteria for contaminants associated with aggregate extraction operations were taken from Ontario's Ambient Air Quality Criteria² (AAQC) developed by the MECP. The AAQC limit concentrations for contaminants in air based on protection against adverse effects on public health or the environment. The Canadian Ambient Air Quality Standards³ (CAAQS) were used for PM2.5. The CAAQS coming into effect in

¹ Lall R., Kendall M., Ito K., Thurston G.D. (2004) Estimation of Historical Annual PM2.5 Exposures for Health Effects Assessment. Atmospheric Environment, Vol. 38, Issue 31. ² Ministry of the Environment and Climate Change (2012) Ontario's Ambient Air Quality Criteria. PIBS # 6570e01.

³ Environment Canada and Climate Change (2013) Canadian Ambient Air Quality Standards.

2025 were used for NO₂. CAAQS 2025 will supersede Canadian National Ambient Air Quality Objectives⁴ (NAAQOs) for a maximum desired NO₂ level.

Contaminant	CAS#	Averaging Period	AAQC ¹ (μg/m ³)	CAAQS ² 2020 (μg/m ³)	CAAQS 2025 (μg/m³)	Limiting Effect		
Nitrogen	10102-44-0	1 hr	400	113	79	Health		
Dioxide				(60 ppb)	(42 ppb)			
		24 hr	200			Health		
		Annual		32	23	Health		
				(17 ppb)	(12 ppb)			
PM2.5	-	24 hr	30	27		Health		
		Annual		8.8		Health		
PM10	-	24 hr	50			Health		
TSP	-	24 hr	120			Visibility		
		Annual	60			Visibility		

 Table 5: Representative Contaminants and Air Quality Criteria

 NO_x is the sum of nitrogen dioxide (NO_2) and nitric oxide (NO). Emissions of NO_x consist mainly of NO; however, NO is converted to NO_2 in the ambient air. NO_2 has an adverse effect at much lower concentrations than NO according to Ontario's Ambient Air Quality Criteria publication. Therefore, AAQC is based on the NO_2 . As a conservative assumption for this assessment, it was assumed that all NO is converted to NO_2 .

3.0 Air Quality Assessment

3.1 Methodology

The purpose of the AQS is to assess the potential impact on air quality due to the proposed expansion of the Brantford Pit. The aggregate extraction at the Site will happen in phases. In order to account for the worst-case scenario, all three extraction phases were considered in the assessment. The Site will operate during each phase as following:

- Phase 1 (south part of the Site) layout shown in Figure 4:
 - Overburden removal from Phase 2 area;
 - Perimeter berm construction;
 - Above water aggregate extraction activities within Phase 1 area;
 - Below water aggregate extraction activities within Phase 1 area;
 - Aggregate processing activities within Phase 1 area; and

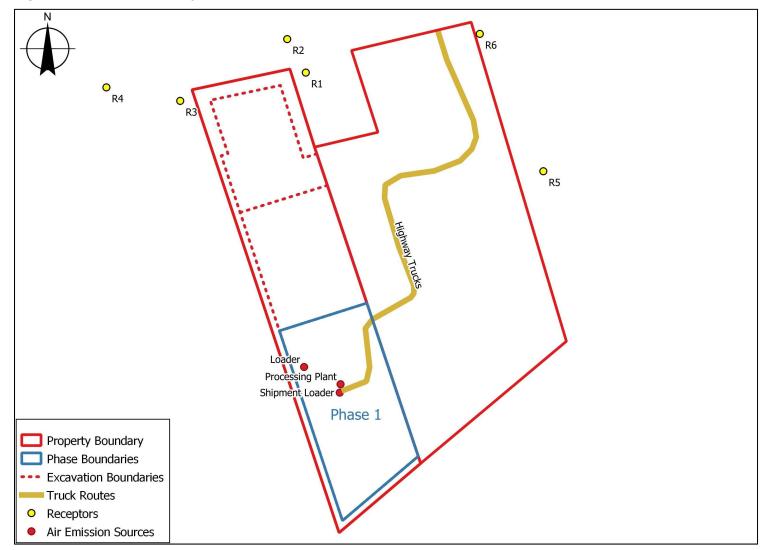
⁴ Canadian Council of Ministers of the Environment (1999) Canadian Environmental Quality Guidelines. Canadian National Ambient Air Quality Objectives: Process and Status.

Air Quality Study July 2020

- Below water aggregate extraction activities at the existing Brantford Pit site (only during the above water extraction within Phase 1 area).
- Phase 2 layout shown in Figure 5:
 - Overburden removal from Phase 3 area;
 - Above water aggregate extraction activities within Phase 2 area;
 - Below water aggregate extraction activities within Phase 2 area;
 - Aggregate processing activities within Phase 2 area; and
 - Below water aggregate extraction activities at the existing Brantford Pit site (only during above water extraction within Phase 2 area).
- Phase 3 layout shown in Figure 6:
 - Above water aggregate extraction activities within Phase 3 area;
 - Below water aggregate extraction activities within Phase 3 area; and
 - Aggregate processing activities within Phase 2 area.

The maximum ground level concentrations were predicted for all contaminants of interest for the three phases. Extraction above the water table level was determined to represent the worst-case scenario as concentrations resulting from the extraction below water level are expected to be much lower due to much higher moisture content in the extracted material.

Extraction activities might happen at the existing Brantford Pit site simultaneously with Phase 1 and Phase 2 above water extraction at the proposed expansion site. Any extraction activities at the existing pit will happen below water; therefore, moisture content in the extracted material will be very high. Considering most of the existing site is vegetated or underwater, while the rest of the area remains undisturbed, this source was deemed to be negligible.


The resulting modelled concentrations from the proposed Brantford Pit expansion site, with and without the background concentration, were compared to the applicable criteria.

The background concentrations were assumed to remain the same in the future. Based on data collected at the MECP ambient monitoring stations, concentrations of the key pollutants such as NO₂, and PM2.5 decreased over the 10 years by 30% and 12%, respectively (MECP, 2018⁵). Assuming this trend will continue in the future, using current background values to assess potential future impact is a conservative approach.

⁵ Ministry of the Environment and Climate Change (2018). Air Quality in Ontario, 2016 Report.

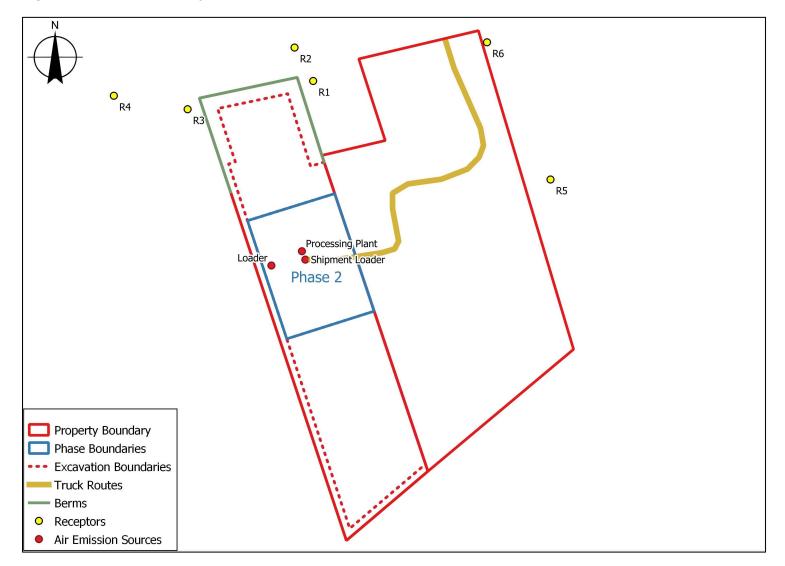

Air Quality Study July 2020

Figure 4: Phase 1 Site Layout

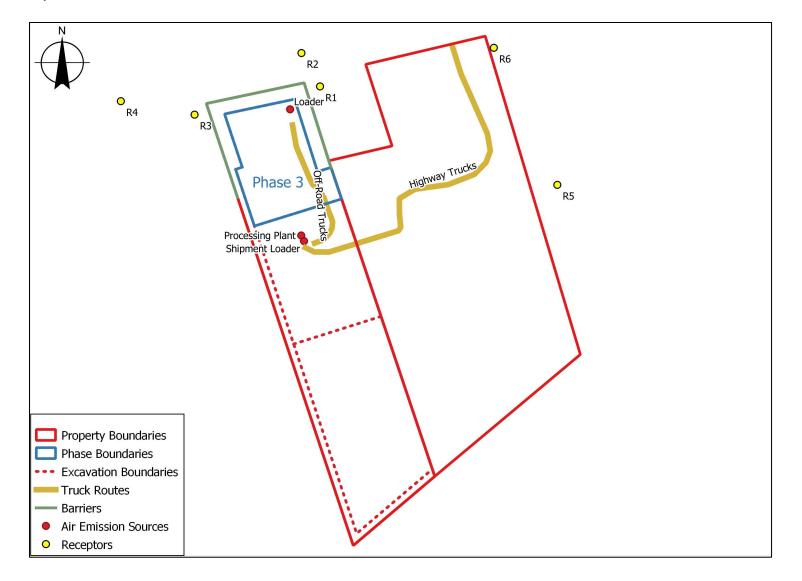

Air Quality Study July 2020

Figure 5: Phase 2 Site Layout

Figure 6: Phase 3 Site Layout

Air Quality Study July 2020

3.2 Emission Calculations

Emission calculations for on-site sources and activities were calculated using methods most suitable for each type of source as described below. All the on-site sources are summarized in Appendix A, Table A-01.

On-Site Non-Road Dust

Particulate emissions from on-site material handling and storage piles were calculated based on the maximum amount of aggregate extraction per day using emission factors from the US EPA developed for mineral products industry⁶ and aggregate handling and storage piles ⁷. Typical parameters for aggregate extraction operation were taken from the same publication. Detailed calculations are provided in Appendix B, Table B-01.

On-Site Road Vehicle Emissions

Transportation related emissions are associated with fuel combustion, brake wear, tire wear, as well as re-suspended road dust.

Emission factors for fuel combustion, break wear and tire wear were estimated using Motor Vehicle Emission Simulator (MOVES) developed by the US EPA Office of Transportation and Air Quality (OTAQ). This emission modeling system estimates emissions for mobile sources covering a broad range of pollutants.

Vehicles traveling on gravel roads cause dust to be transported into the air. Road dust emissions were calculated using US EPA methodology for unpaved⁸ and roads. A control efficiency of 95% was assumed for the unpaved on-site roads, which is up 1.5 L of water per 1 m² surface in 1 hour⁹.

MOVES software does not provide an emission factor for TSP. An exhaust emission factor for PM10 was used for TSP as, according to the US EPA, based on emissions test results, more than 97% of tailpipe particulate matter is PM10 or less.

The total emission factors for particulate matter were a sum of tail pipe and road dust emission factors. On-site road emission calculations are provided in Appendix B, Table B-02.

⁶ US EPA, AP 42, Fifth Edition Compilation of Air Pollutant Emissions Factors, Volume 1: Stationary Point and Area Sources, Chapter 11 - Mineral Products Industry.

⁷ US EPA, AP 42, Fifth Edition Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources, Chapter 13, Section 2.4 Aggregate Handling and Storage Piles.

⁸ US EPA TTN CHIEF, AP-42, Fifth Edition, Volume I, Chapter 13, 13.2.2, Draft Section – March 22, 2006.

⁹ RWDI presentation at "Fugitive, Dust, Best Management Practices" A&WMA Nuisance Conference, June 21, 2017, page 14.

On-Site Non-Road Vehicle Emissions

Various off-road equipment will operate at the Site, like processing plant (crusher, screener), dragline, excavators, extraction and shipment loaders. It is possible for most of the vehicles to be on-site at the same time and be in use within the same hour; however, only one of dragline or excavator will be operating at a time. All of the equipment is assumed to be operating at 100% capacity, 12 hours per day. Shipment loaders will be the only ones that will operate 13 hours per day at 50% capacity due to noise restrictions.

All the engines are assumed to meet US EPA Tier 4 emission standards by 2025. The emission factors were retrieved from the table¹⁰ at the bottom of the page of Appendix B, Table B-03.

3.3 Air Dispersion Modelling

Dispersion modelling was completed in accordance with the MECP's "Air Dispersion Modelling Guideline for Ontario" (ADMGO)¹¹. Since standards and criteria applicable to this assessment are based on 1 hour, 24 hours, and annual periods, the modelled impact of contaminant emissions is assessed as 1 hour, 24 hour, and annual maximum concentrations. The appropriate model to assess the maximum impact is the US EPA AERMOD model.

Meteorological Data

MECP site specific meteorological data preprocessed for AERMOD v19191 was used for this assessment. The meteorological data covers the dates from January 1, 2014 to December 31, 2018. The hourly data includes many factors which affect the dispersion of air contaminants including wind speed, wind direction, temperature, ceiling height, and atmospheric stability.

Terrain Data

Terrain elevation contour data was downloaded from Ontario Digital Elevation Model data set and processed using the AERMOD terrain processor AERMAP. AERMAP determines base terrain elevation using the DEM data for all sources, receptors and buildings, and provides the user with a suitable input file for use with AERMOD.

¹⁰ This table is constructed from the information at

https://www.dieselnet.com/standards/us/nonroad.php

¹¹ MECP (2017) Air Dispersion Modelling Guideline for Ontario (Guideline A-11).

Deposition

Dry and wet depletion algorithms were utilized in the models for the particulates. These methods account for gravitational settling and deposition of particles. The particle size distribution and density were taken from Burnside's reference files for a typical bulk material and are summarized in Table 6.

Particle Density, g/cm ³	Particle Diameter, microns	Mass Fraction
2.5	25.0	0.21
	17.5	0.12
	12.5	0.13
	8.0	0.15
	5.0	0.10
	3.25	0.06
	1.75	0.13
	0.50	0.10

 Table 6: Typical Particle Size Distribution Used for Particulate Deposition

Site Operation Levels

The proposed expansion will not operate at full capacity year-round. Typically, it will be closed during winter months (December to February); however, occasionally there will be some activity during these months. Conservatively, it was assumed that the pit will operate at 5% of the regular activity levels. The complete list of activity levels is shown in Table 7.

Month	Shipping	Production
January	5%	5%
February	5%	5%
March	5%	25%
April	25%	50%
May	25%	50%
June	50%	100%
July	100%	100%
August	100%	100%
September	100%	100%
October	50%	50%
November	50%	25%
December	5%	5%

Table 7: Monthly Operation Levels

All the sources included in the modelling are summarized in Appendix A, Table A-02 for all three phases.

4.0 Modelling Results

The impact of the proposed Brantford Pit expansion was assessed based on predicted Maximum Ground Level Concentration (concentration) in the vicinity of the Site and existing background concentrations as monitored at the nearest MECP station.

Predicted maximum concentrations at each sensitive receptor for all three phases (as described in Section 3.0) are summarized in Table 8 through Table 11.

The results are presented by contaminant and phase and include background concentration (90th percentile), maximum concentration at each sensitive receptor, cumulative concentration, cumulative impact as percentage of the criteria and number of days per year the criterion will be exceeding at the sensitive receptor.

Table 8 shows results for the smallest particulate matter, PM2.5. Cumulative concentrations for 24-hour averaging period are predicted to remain below criteria for PM2.5 at all sensitive receptors during each of the three extraction phases; therefore, no adverse impact is expected from the proposed activities.

The average annual background concentration for PM2.5 is 92% of criterion without any contribution from the Site activities. Predicted cumulative annual concentrations for PM2.5 do not exceed criterion most of the time at the receptors, except during Phase 3 activities at receptor R1. The contribution of PM2.5 from the Site at receptor R1 is only 16% to the cumulative annual concentration; however, even this small fraction results in concentration slightly above criterion.

According to Air Quality in Ontario 2017 Report, fine particulate matter decreased 11% from 2008 to 2017. Considering the general trend in Ontario, average annual background concentrations and small contribution due to the activities at the Site it is reasonable to expect that cumulative PM2.5 concentrations will be below their annual criteria in the vicinity of the Site most of the time.

Results summarized for PM10 (Table 9) indicate that 24-hour averaging cumulative concentration will not exceed criterion at any sensitive receptor location after removing outliers.

The dispersion model does not consider the effects of the berm that will be constructed around Phase 3 area and will separate the Site from the surrounding environment. The maximum off-property concentration during Phase 3 activities is expected to be lower due to the berm as well as the vegetation on the berm.

Maximum cumulative TSP concentrations at all sensitive receptors are predicted to remain below criterion for 24-hour averaging period during all three phases of operation. Cumulative annual off-property concentrations are always predicted to be below criterion at any location.

Air Quality Study July 2020

Maximum NO₂ off-property concentration predicted from the Site activities are below criteria for all averaging periods. Maximum cumulative NO₂ concentration predicted to be below criteria at all sensitive receptors; therefore, no negative impact is expected.

Air Quality Study July 2020

Phase	Receptor ID		24-h	our Concentratio	ons			Annual Co	ncentrations	
		Background (µg/m³)	Max POI Concentration (µg/m³)	Cumulative Concentration (µg/m³)	Cumulative Impact (%)	Exceedances (days/year)	Background (µg/m³)	Max POI Concentration (µg/m³)	Cumulative Concentration (µg/m³)	Cumulative Impact (%)
Phase 1	R1	14.1	1.32	15.4	57%	0	8.1	0.08	8.2	93%
	R2		1.18	15.3	57%	0		0.06	8.2	93%
	R3		1.36	15.4	57%	0		0.05	8.2	93%
	R4		1.15	15.2	56%	0		0.04	8.2	93%
	R5		1.96	16.0	59%	0		0.26	8.4	95%
	R6		1.51	15.6	58%	0		0.19	8.3	95%
Phase 2	R1		2.62	16.7	62%	0		0.21	8.3	95%
	R2		2.12	16.2	60%	0		0.14	8.3	94%
	R3		2.82	16.9	63%	0		0.12	8.3	94%
	R4		1.65	15.7	58%	0		0.08	8.2	93%
	R5		2.46	16.5	61%	0		0.29	8.4	96%
	R6		3.11	17.2	64%	0		0.31	8.4	96%
Phase 3	R1		11.34	25.4	94%	0		1.57	9.7	110%
	R2		6.6	20.7	77%	0		0.63	8.8	100%
	R3		6.51	20.6	76%	0		0.48	8.6	98%
	R4		1.86	15.9	59%	0		0.15	8.3	94%
	R5		2.3	16.4	61%	0		0.24	8.4	95%
	R6		3.34	17.4	65%	0		0.39	8.5	97%

Table 8: Maximum Predicted Concentrations – PM2.5

Background – 90th percentile of MECP measured values for 24 hours and average values for annual background.

Criteria:

27 μg/m³, 24-hour 8.8 μg/m³, annual

300043727.0000

Air Quality Study July 2020

Phase	Receptor ID		24-h	our Concentration	s	
		Background (µg/m³)	Max POI Concentration (µg/m³)	Cumulative Concentration (µg/m³)	Cumulative Impact (%)	Exceedances (days/year)
Phase 1	R1	26.1	3.81	29.9	60%	0
	R2		3.02	29.1	58%	0
	R3		3.94	30.0	60%	0
	R4		2.76	28.8	58%	0
	R5		6.13	32.2	64%	0
	R6		10.29	36.4	73%	0
Phase 2	R1		6.34	32.4	65%	0
	R2		5.46	31.5	63%	0
	R3		7.32	33.4	67%	0
	R4		3.77	29.9	60%	0
	R5		8.29	34.4	69%	0
	R6		14.04	40.1	80%	0
Phase 3	R1		21.26 ¹²	47.3	95%	0
	R2]	15.05	41.1	82%	0
	R3	1	14.89	41.0	82%	0
	R4		14.48	40.6	81%	0
	R5]	8.12	34.2	68%	0
	R6		11.84	37.9	76%	0

Table 9: Maximum Predicted Concentrations – PM10

Background – 90th percentile of MECP measured values.

Criterion:

50 µg/m³, 24-hour

18

¹² After removing outliers.

Air Quality Study July 2020

Criteria

Table 10: Maximum Predicted Concentrations – TSP

Phase	Receptor ID		24-ho	ur Concentration	S			Annual Con	centrations	
		Background (µg/m³)	Max POI Concentration (µg/m³)	Cumulative Concentration (µg/m³)	Cumulative Impact (%)	Exceedances (days/year)	Background (µg/m³)	Max POI Concentration (µg/m³)	Cumulative Concentration (µg/m³)	Cumulative Impact (%)
Phase 1	R1	46.9	13.59	60.5	50%	0	27.1	1.09	28.2	47%
-	R2		10.67	57.6	48%	0		0.79	27.9	47%
	R3		10.16	57.1	48%	0		0.57	27.7	46%
	R4		6.79	53.7	45%	0		0.39	27.5	46%
-	R5		19.96	66.9	56%	0		3.47	30.6	51%
-	R6		37.38	84.3	70%	0		4.72	31.8	53%
Phase 2	R1		14.77	61.7	51%	0		1.63	28.8	48%
	R2		12.42	59.4	49%	0		1.11	28.2	47%
	R3		16.45	63.4	53%	0		0.86	28.0	47%
	R4		7.21	54.2	45%	0		0.52	27.6	46%
	R5		23.73	70.7	59%	0		3.25	30.4	51%
	R6		44.8	91.7	76%	0		5.20	32.3	54%
Phase 3	R1		47.4	94.3	79%	0		5.26	32.4	54%
	R2		25.44	72.4	60%	0		2.44	29.6	49%
	R3		27.15	74.1	62%	0		1.74	28.9	48%
	R4		8.87	55.8	47%	0		0.7	27.8	46%
-	R5]	26.13	73.1	61%	0		2.81	29.9	50%
-	R6	7	42.21	89.2	74%	0		5.17	32.3	54%

Background – 90th percentile of MECP measured values for 24 hours and average values for annual background.

120 μg/m³, 24-hour 60 μg/m³, annual

300043727.0000

Table 11:	Maximum	Predicted	Concentrations -	- NO2
-----------	---------	-----------	-------------------------	-------

			1-hc	our Concentratio	ns			24-h	our Concentratio	ons			Annual Con	centrations	
Phase	Receptor ID	Background (µg/m³)	Max POI Concentration (μg/m³)	Cumulative Concentration (µg/m³)	Cumulative Impact (%)	Exceedances (days/year)	Background (µg/m³)	Max POI Concentration (µg/m³)	Cumulative Concentration (µg/m³)	Cumulative Impact (%)	Exceedances (days/year)	Background (µg/m³)	Max POI Concentration (µg/m³)	Cumulative Concentration (µg/m³)	Cumulative Impact (%)
Phase	R1	20.7	7.37	28.1	36%	0	17.5	1.50	19.0	9%	0	9.2	0.08	9.3	16%
1	R2		7.44	28.1	36%	0		1.35	18.8	9%	0		0.06	9.3	15%
	R3		7.97	28.7	36%	0		1.78	19.2	10%	0		0.05	9.3	15%
	R4		8.10	28.8	36%	0		1.74	19.2	10%	0		0.04	9.3	15%
	R5		8.04	28.7	36%	0		2.16	19.6	10%	0		0.22	9.4	16%
	R6		7.90	28.6	36%	0		1.48	18.9	9%	0		0.14	9.4	16%
Phase	R1		8.04	28.7	36%	0		2.56	20.0	10%	0		0.16	9.4	16%
2	R2		8	28.7	36%	0		1.77	19.2	10%	0		0.12	9.3	16%
	R3		9.38	30.1	38%	0		2.67	20.1	10%	0		0.09	9.3	16%
	R4		7.94	28.6	36%	0		1.35	18.8	9%	0		0.06	9.3	15%
	R5		9.03	29.7	38%	0		2.51	20.0	10%	0		0.21	9.4	16%
	R6		8.55	29.2	37%	0		2.66	20.1	10%	0		0.22	9.4	16%
Phase	R1		24.63	45.3	57%	0		9.97	27.4	14%	0		1.09	10.3	17%
3	R2		15.61	36.3	46%	0		6.84	24.3	12%	0		0.4	9.6	16%
	R3		8.41	29.1	37%	0		2.31	19.8	10%	0		0.18	9.4	16%
	R4		4.73	25.4	32%	0		1.26	18.7	9%	0		0.09	9.3	16%
	R5		5.36	26.0	33%	0		1.53	19.0	9%	0		0.19	9.4	16%
	R6		5.52	26.2	33%	0		1.8	19.3	10%	0		0.26	9.5	16%

Background – 90th percentile of MECP measured values for 1 hour and 24 hours and average values for annual background. Criteria

79 μg/m³, 1-hour
200 μg/m³, 24-hour
23 μg/m³, annual

5.0 Conclusions and Recommendations

This Air Quality Study evaluated the impacts of the proposed Brantford Pit expansion on the surrounding environment. The results of the dispersion modelling show that predicted particulate and nitrogen oxides off-property concentrations generated from the operation of the proposed Brantford Pit expansion will be below the applicable criteria at all times. Cumulative off-property concentrations were predicted to be below the applicable criteria at all surrounding sensitive receptor locations for all contaminants except for annual PM2.5 concentration at receptor R1. The exceedance is mainly due to the elevated background concentration and the contribution from the activities at the Site is only 16%. Considering the Site's worst case contribution is small and the general trend of decrease in PM2.5 concentrations in Ontario, it is reasonable to expect that cumulative PM2.5 concentrations will be below their annual criteria in the vicinity of the Site for the majority of the time during operations; therefore, no adverse effect is expected due to the proposed expansion. The following dust mitigation measures and best management practices are recommended to be implemented at the proposed Brantford pit expansion site:

- Paved portion of the road at the Site entry/exit should be cleaned periodically to minimize mud tracking onto Colborne Street West and reduce dust generation.
- Reduced speeds should be enforced on-site, and signs posted at the Site entrance.
- Watering of on-site unpaved roads (up to 1.5 L/m2 per hour) when visible dust is observed behind the trucks. Other commercial dust suppressants can be considered if required.
- Regular washing of extraction, processing and transport equipment.
- Wetting material prior to processing or loading on very dry days.
- Monitor on-site dust through visual site inspections and apply additional water when needed.
- Installing berms around excavation area to reduce windblown dust onto neighboring properties.
- Re-vegetating disturbed areas as soon as possible to minimize dust from these areas.
- During very dry and windy conditions resulting in dust plumes travelling off-site, activities at the Site should be temporarily suspended.

Air Quality Study July 2020

Biographies

Harvey Watson, P.Eng.

Harvey has over 15 years of experience in the Air and Noise Approvals industry. Normally, Harvey is initially retained to address a specific environmental air or noise related project. Subsequently, he is recalled for every similar or potentially related project and so has built a strong client base of repeat clients. Harvey's clients have found that they receive great service at a reasonable cost and rarely look elsewhere for services that he can provide. Harvey specializes in intricate and complicated spreadsheets, so he can handle the most complex challenges but always looks for the most practical solution to problems which minimizes the client costs and difficulties. Harvey has undertaken projects for a wide range of municipal, industrial, and commercial clients with businesses including various municipal governments, commercial food franchises, automotive refinishing, chemical refining, flexible packaging printing, railcar cleaning and repair, agricultural pharmaceuticals, automotive parts manufacturing, industrial transformer refurbishing, mining consumable manufacturing, paint additive manufacturing, consumer chemical mixing and packaging, industrial ink manufacturing, commercial sign manufacturing, aircraft landing gear heat treating, and aggregate pits.

Harvey has successfully completed more than 150 applications for Ontario Environmental Compliance (ECA) Approvals and Environmental Activities and Sector Registry (EASR) registrations which include air, noise, and vibration aspects. All the applications resulted in the Ministry of the Environment, Conservation and Parks (MECP) issuing an approval. Harvey also assisted numerous clients with other environmental compliance requirements such as National Pollutant Release Inventory (NPRI), Ministry of Energy Reporting of Energy Consumption and Water Use, Provincial Stewardship reporting, Toronto ChemTRAC, Oakville Fine Particulate Matter, Saskatchewan Environmental Protection Plans, and Alberta Industrial Approval Applications.

In addition, Harvey has been involved in various projects including site specific odour sampling and modelling.

Air Quality Study July 2020

Kristina Zeromskiene, Ph.D., LEL

Kristina is a licensed engineering professional in air and noise disciplines. Kristina has over 10 years of experience with environmental assessments, industrial approvals, and emission inventories for the waste management, manufacturing, power generation, transportation, and variety of other sectors. Kristina has completed multiple air quality assessments and obtained approvals for industrial and commercial facilities and is very knowledgeable in Ontario regulations and guidelines. Kristina has performed process and non-process related emission inventories, dispersion modelling, data analysis and has worked with a variety of surface and upper-air meteorological data sets. Kristina has advance skills in dispersion modelling using atmospheric dispersion modelling systems like AERMOD and CALRoads. Kristina has prepared, reviewed and assisted multiple clients in emission assessments and reporting to federal, provincial and municipal governments.

Kristina is likewise experienced in industry and transportation related noise assessments. Kristina is proficient with software package for environmental noise projects Predictor as well as Ministry of the Environment, Conservation and Parks (MECP) computer program for road and rail traffic noise assessment STAMSON. Kristina has completed noise impact assessments and peer reviews for road improvements, commercial/industrial and residential developments and aggregate extraction activities in Ontario.

Appendix A

Emission Source Identification

Table A-01: Sources and Contaminants Identification Table (2019-12)

Source ID	Source Description	General Location	Contaminants	Significant? Yes/No	Rate / Rationale
BLDZ	Bulldozer	Overburden removal - entire site	PM	No	Moist material, less dust than extraction, short duration
SCR	Screener	Processing plant area	NO ₂ , PM	No	Accounted under Processing Plant
CRU	Crusher	Processing plant area	NO ₂ , PM	No	Accounted under Processing Plant
STK	Stockpile	Various	PM	No	Accounted under Processing Plant & Material Handling
WF	Working Face	Working face area	PM	No	Accounted under Material Handling
CONV	Conveyor Transfers	Processing plant area	PM	No	Accounted under Processing Plant
TRCK_1	Onsite highway trucks	Truck route - Phase 1 area	NO ₂ , PM	Yes	
TRCK_2	Onsite highway trucks	Truck route - Phase 2 area	NO ₂ , PM	Yes	
TRCK_3A	Onsite highway trucks	Truck route - Phase 3 area (above water table)	NO ₂ , PM	Yes	
TRCK_3B	Onsite highway trucks	Truck route - Phase 3 area (below water table)	NO ₂ , PM	No	Below water extraction, not the worst case scenario
TRCKO_3A	Onsite off-road trucks	Truck route - Phase 3 (above water table)	NO ₂ , PM	Yes	
TRCKO_3B	Onsite off-road trucks	Truck route - Phase 3 (below water table)	NO ₂ , PM	No	Below water extraction, not the worst case scenario
DRGL	Dragline	Working face area	NO ₂ , PM	No	Only 1 dragline or excavator operates at a time
EXVT	Excavator	Working face area	NO ₂ , PM	No	Only during below water extraction
LOAD_1	Extraction Loader	Working face - Phase 1 area	NO ₂ , PM	Yes	PM accounted under Material Handling
LOAD_2	Extraction Loader	Working face - Phase 2 area	NO ₂ , PM	Yes	PM accounted under Material Handling
LOAD_3	Extraction Loader	Working face - Phase 3 area	NO ₂ , PM	Yes	PM accounted under Material Handling
LOAD_SH1	Shipment Loader	Processing plant area	NO ₂ , PM	Yes	PM accounted under Processing Plant
LOAD_SH2	Shipment Loader	Processing plant area	NO ₂ , PM	Yes	PM accounted under Processing Plant
LOAD_SH3	Shipment Loader	Processing plant area	NO ₂ , PM	Yes	PM accounted under Processing Plant
PP_1	Processing Plant	Phase 1 area	NO ₂ , PM	Yes	
PP_2	Processing Plant	Phase 2 area	NO ₂ , PM	Yes	
-	Processing Plant	Phase 3 area	NO ₂ , PM	Yes	
MH_1	Material Handling	Phase 1 area	PM	Yes	
MH_2	Material Handling	Phase 2 area	PM	Yes	
MH_3	Material Handling	Phase 3 area	PM	Yes	

Project No.: 043727

Lafarge Canada Brantford, Ontario

Table A-02: Source Summary Table (2019-12)

Modelled Source ID	Source ID	Source Description	Modelled Source Type	
LOAD 1	LOAD 1	Extraction Loader - Phase 1 Area	POINT	
LOAD 2	LOAD 2	Extraction Loader - Phase 2 Area	POINT	
LOAD 3	LOAD_3	Extraction Loader - Phase 3 Area	POINT	
	MH 1	Material Handling - Phase 1 Area		
	STK	Stockpile		
MH_1	WF	Working Face	OPEN PIT	
—	CONV	Conveyor Transfers	7	
	LOAD 1	Extraction Loader		
	MH 2	Material Handling - Phase 2 Area		
	STK	Stockpile		
MH 2	WF	Working Face		
—	CONV	Conveyor Transfers		
	LOAD 2	Extraction Loader		
	MH_3	Material Handling - Phase 3 Area		
	STK	Stockpile		
MH_3	WF	Working Face	OPEN PIT	
—	CONV	Conveyor Transfers		
	LOAD 3	Extraction Loader		
	PP 1	Processing Plant - Phase 1 Area		
	SCR	Screener		
PP_1	CRU	Crusher	OPEN PIT/POINT*	
	LOAD SH1	Shipment Loader		
	PP 2	Processing Plant - Phase 2 Area		
	SCR	Screener		
PP_2	CRU	Crusher	OPEN PIT/POINT*	
	LOAD SH2	Shipment Loader		
	PP 3	Processing Plant - Phase 3 Area		
0 0	SCR	Screener		
PP_3	CRU	Crusher	OPEN PIT/POINT*	
	LOAD SH3	Shipment Loader	1	
TRCK 1	TRCK 1	Onsite highway trucks - Phase 1 Area	LINE VOLUME	
TRCK_2	TRCK_2	Onsite highway trucks - Phase 2 Area	LINE VOLUME	
TRCK_3A	TRCK_3A	Onsite highway trucks - Phase 3 Area	LINE VOLUME	
TRCKO 3A	TRCKO 3A	Onsite off-road trucks - Phase 3 Area	LINE VOLUME	

* Activities at the Processing plant were modelled as OPEN PIT for particulate, engines were modelled as POINT source for NO₂

Appendix B

Emission Calculations

Processing Plant - Screening & Crushing

5,000 tonnes/day Daily throughput

Contaminant	Emissior (kg/to		Emissic (g/	
Containinant	Screening (controlled)	Crushing (controlled)	Screening	Crushing
TSP	0.0011	0.0006	0.06	0.03
PM10	0.00037	0.00027	0.02	0.02
PM2.5	0.000025	0.00005	0.00145	0.003

Source: U.S. EPA Fifth Edition, Volume I Chapter 11, section 11.19.2, Crushed Stone Processing and Pulverized Mineral Processing, Table 11.19-2-1 Control factors available in "Pits and quarries reporting guide - Canada.ca.pdf"

Processing Plant - Conveyor Transfers

5,000 tonnes/day Daily throughput

	Emission Factors (kg/tonne)	Emission Rate (g/s)	
Contaminant	Conveyor Transfer Point (controlled)	Conveyor Transfer Point	
TSP	0.00007	0.0041	
PM10	2.30E-05	0.0013	
PM2.5	6.50E-06	3.76E-04	

Source:

U.S. EPA Fifth Edition, Volume I Chapter 11, section 11.19.2, Crushed Stone Processing and Pulverized Mineral Processing, Table 11.19-2-1 Control factors available in "Pits and quarries reporting guide - Canada.ca.pdf"

Material Handling - Working Face

The quantity of particulate emissions generated by either type of drop operation, per mass of material transferred

k =	see table below	Particle Size Multiplier (dimensionless)
U =	3.48	Mean wind speed (m/s)
M =	5	Material moisture content (%)
Transfer points:	1.00	
Daily Turnover:	5,000.0	tonnes/day

Contaminant	Particle Size	Emission Factor	Emission Rate				
Contaminant	Multiplier (kg PM/day	g/s			
TSP	0.74	5.958E-04	3.0E+00	3.448E-02			
PM10	0.35	2.818E-04	1.4E+00	1.631E-02			
PM2.5	0.053	4.267E-05	2.1E-01	2.469E-03			
Source:							

Emissions calculated using "USEPA TTN CHIEF, AP-42, Fifth Edition, Volume I, Chapter 13, Equation 13.2.4.(1)

Wind Erosion from Stockpiles

J =	see table below	Particulate Aerodynamic Factor
s =	6.9	Material silt content (%)
P =	135.6	Average number of days during the year with at least 0.254 mm of precipitation
1 =	26	Percentage of time in the year with unobstructed wind speed >19.3 km/h in percent (%)
D =	12	Stockpile Diameter, m
H =	6	Stockpile Height, m
A =	273	Stockpile Exposed Surface Area, m2
	Dortioulate	Emission

Contaminant	Particulate Aerodynamic Factor	Emission Factor (kg/m2)	Emission Rate (g/s)
TSP	1	5.43E-01	1.48E-01
PM10	0.5	2.71E-01	7.41E-02
PM2.5	0.2	1.09E-01	2.97E-02

Source:

Control factors available in "Pits and quarries reporting guide - Canada.ca.pdf", Equation 8.11

Table B-02: On-Site Unpaved Road Emissions (2019-12)

Road description: Unpaved - Gravel

Truck Type	Max Hourly Traffic (trucks/h) 20 20	Max Daily Traffic (trucks/day)	Average Vehicle Weight (tons)	Mean vehicle speed (mph)
Off-Road Truck	20	250	30	19
Highway Truck	20	250	30	16

s: Surface material silt content: 4.8 % AP42,c13.2.2, Table 13.2.2-1 face material moisture content: 6.5 % AP42,c13.2.2, Table 13.2.2-3

oisture content:	6.5	%	_A
PM2.5	PM10	PM-30	1
0.15	1.5	4.9	
0.9	0.9	0.7	
0.45	0.45	0.45	
В	В	В	
	PM2.5 0.15 0.9	PM2.5 PM10 0.15 1.5 0.9 0.9	PM2.5 PM10 PM-30 0.15 1.5 4.9 0.9 0.9 0.7

Source: AP42,c13.2.2, Table 13.2.2-2

Daily Road Dust Particulate Emissions

	Segment	# of Trips per	# of		укт	VMT (mi)	Em	ission Fact (Ib/VMT)	tors	Emission Factors (g/s) (13-h day)		
Road Segment	Length (m)	Day	Trucks per Day	Weight (tons) (ton)	(km)		PM2.5	PM10	TSP	PM2.5	PM10	TSP
Phase 1	1007	500	250	30.0	503.4	312.8	0.185	1.853	7.272	0.304	3.044	11.943
Phase 2	773	500	250	30.0	386.4	240.1	0.185	1.853	7.272	0.234	2.337	9.168
Phase 3 - Hwy	748	500	250	30.0	374.2	232.5	0.185	1.853	7.272	0.226	2.262	8.877
Phase 3 - Off	293	500	250	30.0	146.5	91.1	0.185	1.853	7.272	0.089	0.886	3.476

VKT - Vehicle Kilometres Travelled

VMT - Vehicle Miles Travelled

AW - Extraction above water table

BW - Extraction below water table

Source:

Emissions calculated using "USEPA TTN CHIEF, AP-42, Fifth Edition, Volume I, Chapter 13, 13.2.2, Draft Section - March 22, 2006 Equation 1a: $E = k \times (s/12)^{a} \times (W/3)^{b}$

Hourly Engine non-Particulate Emissions:

Road Segment	Road Segment Length (m)		# of Trucks per Hour	Mean Vehicle Weight (ton)	VKT (km)	VMT (mi)	Emission Rate (g/h)	Emission Rate (g/s) (1-h Max)	
				(,			NO2	NO2	
Phase 1	1007	40	20	30.0	40.3	25.0	14.99	0.0042	
Phase 2	773	40	20	30.0	30.9	19.2	11.50	0.0032	
Phase 3 - Hwy	748	40	20	30.0	29.9	18.6	11.14	0.0031	
Phase 3 - Off	293	40	20	30.0	11.7	7.3	5.32	0.0015	

Daily Engine Particulate Emissions:

Road Segment	Segment # of Trips per		# of Mean Trucks				Daily Emission Rate (g/day) (g/day)			Emission Rate (g/s) (13-h Average)		
Road Segment	Length (m)	Day	per Day	Weight (tons)	(km)	(mi)	PM2.5	PM10	TSP	PM2.5	PM10	TSP
Phase 1	1007	500	250	30.0	503.4	312.8	44.17	119.96	119.96	0.00051	0.00139	0.00139
Phase 2	773	500	250	30.0	386.4	240.1	33.91	92.09	92.09	0.00039	0.00107	0.00107
Phase 3 - Hwy	748	500	250	30.0	374.2	232.5	32.83	89.17	89.17	0.00038	0.00103	0.00103
Phase 3 - Off	293	500	250	30.0	146.5	91.1	16.08	45.97	45.97	0.00019	0.00053	0.00053

Total Daily Particulate Emissions:

	Segment	# of Trips per	# of Trips per	# of Trips per	# of Trips per	# of	Mean Vehicle	УКТ	∨мт	BMPP Reduction			Emission Rates (g/s) (13-h Average)		
Road Segment	Length (m)	Day	Trucks per Day	Weight (tons) (ton)	(km)	(mi)	PM2.5	PM10	TSP	PM2.5	PM10	TSP			
Phase 1	1007	500	250	30.0	503.4	312.8	0.95	0.95	0.95	0.016	0.154	0.599			
Phase 2	773	500	250	30.0	386.4	240.1	0.95	0.95	0.95	0.012	0.118	0.459			
Phase 3 - Hwy	748	500	250	30.0	374.2	232.5	0.95	0.95	0.95	0.012	0.114	0.445			
Phase 3 - Off	748	500	250	30.0	374.2	232.5	0.95	0.95	0.95	0.005	0.045	0.174			

Table B-03: On-Site Non-Road Vehicle Emissions (2020-03)

Hourly Engine non-Particulate Emissions:

Equipment Type	Gross Power Rating (hp)	Gross Power Rating (kW)	# units	Hourly Load Factor	Hours of Operation	NOx (g/kW-h)	NOx (g/h)	NOx (g/s)
Crusher	355	265	1	100%	1	0.4	105.89	0.03
Dragline	316	236	1	0%	1	0.4	0.00	0.00
Excavator	316	236	1	0%	1	0.4	0.00	0.00
Loader Extraction	350	261	2	100%	1	0.4	208.80	0.06
Loader Shipment	350	261	2	50%	1	0.4	104.40	0.03
Screener	132	98	1	100%	1	0.4	39.37	0.01
Material Handling				100%	1			
Processing Plant				100%	1			0.04

All equipment assumed to meet Tier 4 for NOx emissions by 2025.

One dragline or excavator operates at a time, either operate during below water extraction only

Processing Plant includes Crusher and Screener

Daily Engine Particulate Emissions:

Equipment Type	Gross Power Rating (hp)	Gross Power Rating (kW)	# units	Daily Load Factor	Hours of Operation	PM2.5 (g/kW-h)	PM10 (g/kW-h)	TSP (g/kW-h)	PM2.5 (g/day)	PM10 (g/day)	TSP (g/day)	PM2.5 (g/s)	PM10 (g/s)	TSP (g/s)
Crusher	355	265	1	100%	12	0.2	0.2	0.2	635.34	635.34	635.34	0.007	0.007	0.007
Dragline	316	236	1	0%	12	0.2	0.2	0.2	0.00	0.00	0.00	0.000	0.000	0.000
Excavator	316	236	1	0%	12	0.2	0.2	0.2	0.00	0.00	0.00	0.000	0.000	0.000
Loader Extraction	350	261	2	100%	12	0.2	0.2	0.2	1252.78	1252.78	1252.78	0.014	0.014	0.014
Loader Shipment	350	261	2	50%	13	0.2	0.2	0.2	678.59	678.59	678.59	0.008	0.008	0.008
Screener	132	98	1	100%	12	0.2	0.2	0.2	236.24	236.24	236.24	0.003	0.003	0.003
Material Handling				100%	12							0.014	0.014	0.014
Processing Plant				100%	12							0.018	0.018	0.018

One dragline or excavator operates at a time, either operate during below water extraction only

Processing Plant includes Crusher and Screener

Table B-03: On-Site Non-Road Vehicle Emissions (2020-03)

https://www.dieselnet.com/standards/us/nonroad.php

EPA Tier 1-3 Nonroad Diesel Engine Emission Standards, g/kWh (g/bhp·hr)

Engine Power	Tier	Year	со	нс	NMHC + NOx	NOx	PM
kW < 8 (hp < 11)	Tier 1	2000	8.0 (6.0)	-	10.5 (7.8)	-	1.0 (0.75)
	Tier 2	2005	8.0 (6.0)	-	7.5 (5.6)	-	0.8 (0.6)
8 ≤ kW < 19 (11 ≤ hp <	Tier 1	2000	6.6 (4.9)	-	9.5 (7.1)	-	0.8 (0.6)
25)	Tier 2	2005	6.6 (4.9)	-	7.5 (5.6)	-	0.8 (0.6)
19≤ kW < 37 (25 ≤ hp <	Tier 1	1999	5.5 (4.1)	-	9.5 (7.1)	-	0.8 (0.6)
50)	Tier 2	2004	5.5 (4.1)	-	7.5 (5.6)	-	0.6 (0.45)
37 ≤ kW < 75 (50 ≤ hp <	Tier 1	1998	-	-	-	9.2 (6.9)	-
100)	Tier 2	2004	5.0 (3.7)	-	7.5 (5.6)	-	0.4 (0.3)
	Tier 3	2008	5.0 (3.7)	-	4.7 (3.5)	-	-†
75 ≤ kW < 130 (100 ≤	Tier 1	1997	-	-	-	9.2 (6.9)	-
hp < 175)	Tier 2	2003	5.0 (3.7)	-	6.6 (4.9)	-	0.3 (0.22)
	Tier 3	2007	5.0 (3.7)	-	4.0 (3.0)	-	-†
130 ≤ kW < 225 (175 ≤	Tier 1	1996	11.4 (8.5)	1.3 (1.0)	-	9.2 (6.9)	0.54 (0.4)
hp < 300)	Tier 2	2003	3.5 (2.6)	-	6.6 (4.9)	-	0.2 (0.15)
	Tier 3	2006	3.5 (2.6)	-	4.0 (3.0)	-	-†
225 ≤ kW < 450 (300 ≤	Tier 1		11.4 (8.5)	1.3 (1.0)	-	9.2 (6.9)	0.54 (0.4)
hp < 600)	Tier 2	2001	3.5 (2.6)	-	6.4 (4.8)	-	0.2 (0.15)
	Tier 3	2006	3.5 (2.6)	-	4.0 (3.0)	-	-†
450 ≤ kW < 560 (600 ≤	Tier 1			1.3 (1.0)	-	9.2 (6.9)	0.54 (0.4)
hp < 750)	Tier 2	2002	3.5 (2.6)	-	6.4 (4.8)	-	0.2 (0.15)
	Tier 3		3.5 (2.6)	-	4.0 (3.0)	-	-†
kW ≥ 560 (hp ≥ 750)	Tier 1		11.4 (8.5)	1.3 (1.0)	-	9.2 (6.9)	0.54 (0.4)
,	Tier 2		3.5 (2.6)	-	6.4 (4.8)	-	0.2 (0.15

† Not adopted, engines must meet Tier 2 PM standard.

Table B-03: On-Site Non-Road Vehicle Emissions (2020-03)

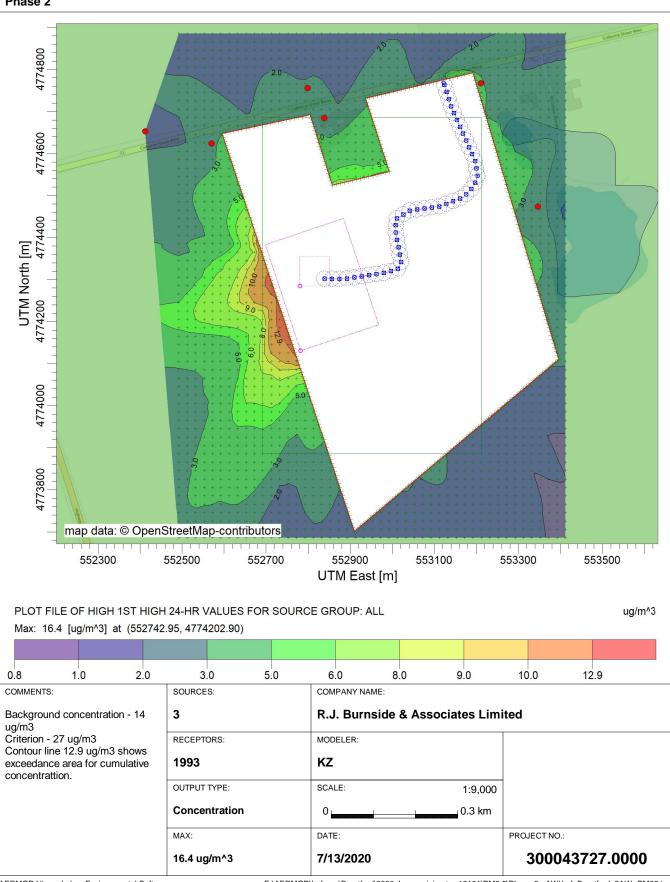
Tier 4 Emission Standards-	-Engines up to 560) kW. a/kWh (a/bhp-hr)

Engine Power	Year	со	NMHC	NMHC+ NOx	NOx	РМ
kW < 8 (hp < 11)	2008	8.0 (6.0)	-	7.5 (5.6)	-	0.4a (0.3)
$8 \le kW < 19$ (11 $\le hp < 25$)	2008	6.6 (4.9)	-	7.5 (5.6)	-	0.4 (0.3)
19 ≤ kW < 37	2008	5.5 (4.1)	-	7.5 (5.6)	-	0.3 (0.22)
(25 ≤ hp < 50)	2013	5.5 (4.1)	-	4.7 (3.5)	-	0.03 (0.022)
37 ≤ kW < 56	2008	5.0 (3.7)	-	4.7 (3.5)	-	0.3b (0.22)
(50 ≤ hp < 75)	2013	5.0 (3.7)	-	4.7 (3.5)	-	0.03 (0.022)
56 ≤ kW < 130	2012-	5.0 (3.7)	0.19	-	0.40 (0.30)	0.02
(75 ≤ hp < 175)	2014c		(0.14)			(0.015)
130 ≤ kW ≤ 560 (175 ≤ hp ≤ 750)	2011- 2014d	3.5 (2.6)	0.19 (0.14)	-	0.40 (0.30)	0.02 (0.015)

a - hand-startable, air-cooled, DI engines may be certified to Tier 2 standards through 2009 and to an optional PM standard of 0.6 g/kWh starting in 2010

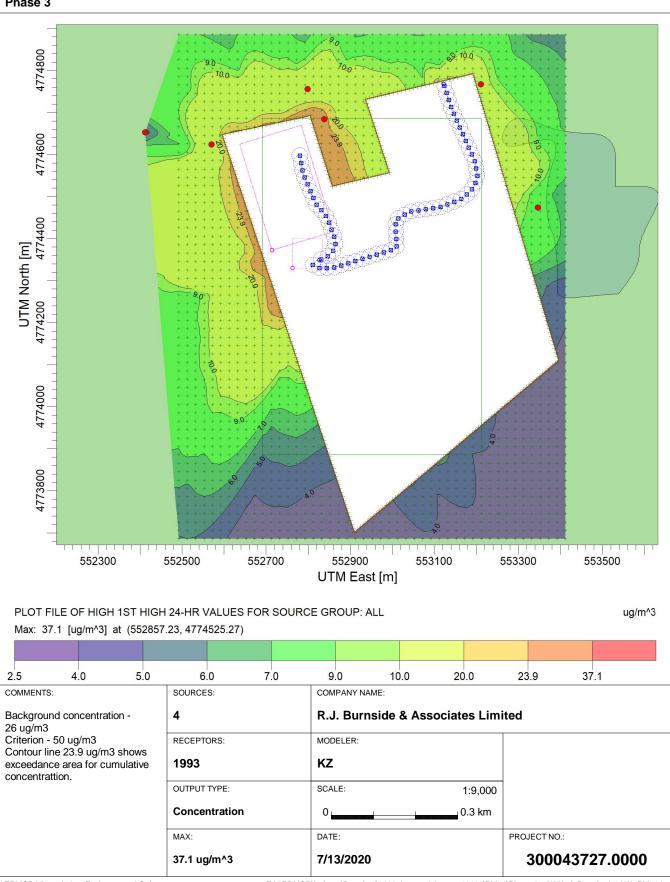
b - 0.4 g/kWh (Tier 2) if manufacturer complies with the 0.03 g/kWh standard from 2012

c - PM/CO: full compliance from 2012; NOx/HC: Option 1 (if banked Tier 2 credits used)—50% engines must comply in 2012-2013; Option 2 (if no Tier 2 credits claimed)—25% engines must comply in 2012-2014, with full compliance from 2014.12.31


d - PM/CO: full compliance from 2011; NOx/HC: 50% engines must comply in 2011-2013

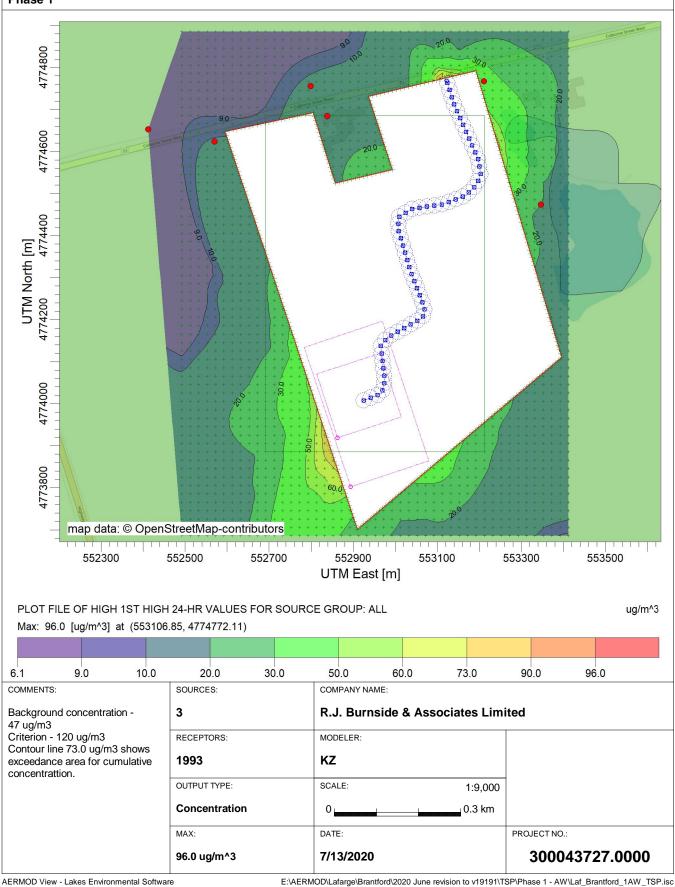
Appendix C

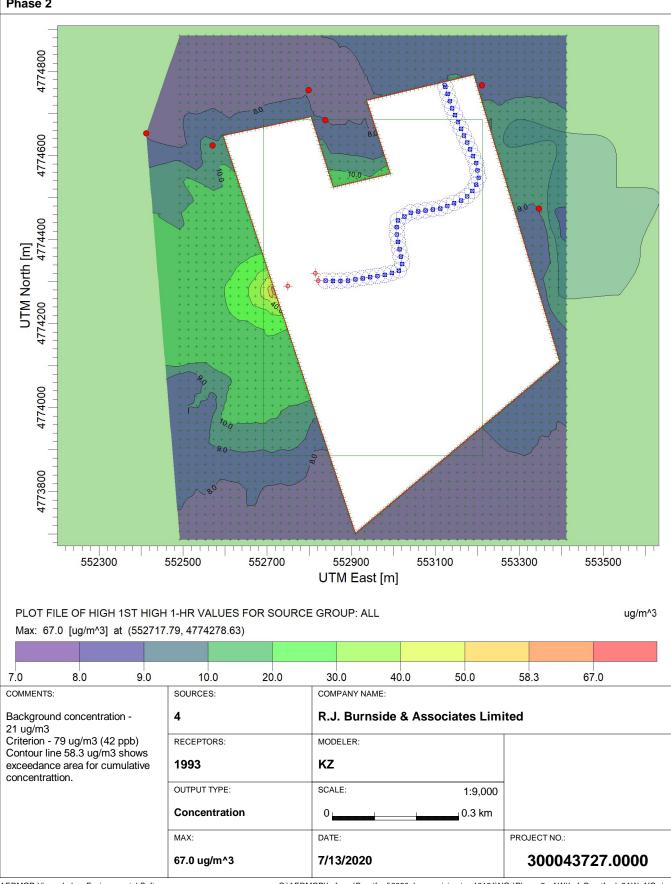
Sample Modelling Results


PROJECT TITLE: Figure C-01: PM2.5 24-Hour Averaging Concentration Contour Plot Phase 2

AERMOD View - Lakes Environmental Software

E:\AERMOD\Lafarge\Brantford\2020 June revision to v19191\PM2.5\Phase 2 - AW\Laf_Brantford_2AW_PM25.isc


PROJECT TITLE: Figure C-02: PM10 24-Hour Averaging Concentration Contour Plot Phase 3


AERMOD View - Lakes Environmental Software

E:\AERMOD\Lafarge\Brantford\2020 June revision to v19191\PM10\Phase 3 - AW\Laf_Brantford_3AW_PM10.isc

PROJECT TITLE: Figure C-03: TSP 24-Hour Averaging Concentration Contour Plot Phase 1

PROJECT TITLE: Figure C-04: NO2 1-Hour Averaging Concentration Contour Plot Phase 2

AERMOD View - Lakes Environmental Software

C:\AERMOD\Lafarge\Brantford\2020 June revision to v19191\NOx\Phase 2 - AW\Laf_Brantford_2AW_NOx.isc

Appendix D

MECP Approval to Use Site-specific Meteorological Data Ministry of the Environment, Conservation and Parks

Environmental Monitoring and Reporting Branch

125 Resources Road Etobicoke ON M9P 3V6 Tel.: 416 235-6300 Fax: 416 235-6235

May 24, 2019 Carol Siemiginowski, Land Manager Lafarge Canada Inc. 6509 Airport Road Mississauga, Ontario L4V 1S7

Ministère de l'Environnement, de la Protection de la nature et des Parcs Direction de la Surveillance Environnmentale

125, chemin Resources Etobicoke ON M9P 3V6 Tél. : 416 235-6300 Téléc. : 416 235-6235

Dear Madam/Sir:

Re: Request for Approval under Paragraph 3 of section 13(1) of Regulation 419/05 For use of Site-specific Meteorological Data: Lafarge Canada Inc. - Brantford (located at 1044 Colborne Street West, Brantford, Ontario)

In accordance with the application for approval under s.13(1) of Regulation 419/05 for use of site-specific meteorological data, I am approving the use of site-specific data for the above-referenced site as requested by Lafarge Canada Inc. in the application dated February 25, 2019.

The site-specific meteorological data referenced as the Brantford airport data is a reasonable reflection of the meteorological conditions for the proposed modelling assessment.

A fully-processed 5-year (2014 to 2018) meteorological data set has been prepared by the Ministry of the Environment, Conservation and Parks with wind-sector dependent land use specific to the site identified in the application, upper air data from the U.S. National Weather Service's Buffalo station and surface data from the Environment and Climate Change Canada's Brantford airport station, with missing data filled with those from the Hamilton airport station.

This fully-processed site-specific meteorological data was prepared in response to a request submitted under O. Reg. 419/05 and is approved for use at this specific facility until such time as there are significant land use changes in vicinity of the facility.

This meteorological dataset was prepared using the AERMET 16216 meteorological pre-processor computer program. It is to be used in conjunction with the corresponding version of AERMOD to model discharges from the above-referenced facility. You are reminded that this dataset must be reprocessed when the Ministry adopts a newer version of AERMET. The Ministry can provide reprocessed meteorological data upon request.

Should you have any comments or questions relating to the above site specific meteorological dataset, please send an e-mail to <u>MetDataENE@ontario.ca</u> within 30 days of the date of this correspondence with details, so that this dataset can be modified, if necessary.

Yours truly,

Yvonne Hall Director, Section 13, O. Reg. 419/05

cc: District Manager, Guelph District Office Director, Section 9, Environmental Protection Act Environmental Assessment and Permissions Branch R.J. Burnside & Associates Limited

R.J. Burnside & Associates Limited